Real Analysis tutorial class 2

Example 0.1. Given $f_n \in C^0(\mathbb{R})$, then the set where f_n converges is a intersection of F_{σ} sets.

Proof. f_n is convergent at $a \in \mathbb{R}$ if and only if $\forall \epsilon > 0, \exists N \in \mathbb{N}$, such that for any m, n > N,

$$|f_n(a) - f_m(a)| \le \epsilon.$$

Hence we may write the set in the following form.

$$A = \bigcap_{n \in \mathbb{N}} \bigcup_{k \in \mathbb{N}} \{a : |f_i(a) - f_j(a)| \le n^{-1}, \ \forall i, j > k\} = \bigcap_{n \in \mathbb{N}} \bigcup_{k \in \mathbb{N}} A_{n,k}$$

Suppose $a_m \in A_{n,k}$ and $a_m \to a \in \mathbb{R}$. We have for all i, j > k,

$$|f_i(a_m) - f_j(a_m)| \le \frac{1}{n}.$$

For such fixed choice of i, j, we may let $m \to \infty$ yielding that $|f_i(a) - f_j(a)| \leq \frac{1}{n}$ meaning that $a \in A_{n,k}$.

Theorem 0.2 (Heine-Borel theorem). If F is closed and bounded set in \mathbb{R} , then any open cover of F has a finite subcover.

1 Outer Measure

Question 1.1. : Can we find a σ -algebra M and a "measure" function $m: M \to [0, +\infty)$ such that $m(\emptyset) = 0$ and $m(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} m(E_i)$ for any disjoint union $E_i \in M$?

Definition 1.2 (Outer measure). For a set A, we define outer measure to be

$$m^*(A) = \inf\{\sum_{i=1}^{\infty} |I_i| : A \subset \bigcup_{i=1}^{\infty} I_i, \ I_i = (a_i, b_i), \ a_i, b_i \in \mathbb{R}\}.$$

For instance, $m^*(I) = |I|$ if I is an bounded interval on real line. (See textbook or do it as exercise)

Example 1.3. Countable set is of zero outer measure.

Proof. For any $\epsilon > 0$,

$$\{q_i\}_{i\in\mathbb{N}}\subset \bigcup_{i=1}^{\infty}(q_i-\frac{\epsilon}{2^i},q_i+\frac{\epsilon}{2^i})$$

where right hand side is of outer measure smaller than 2ϵ which is arbitrarily small. \Box

Example 1.4. A Bounded set E can be approximated by G_{δ} set.

Proof. For any $n \in \mathbb{N}$, there exists union of open intervals I_i^n such that $E \subset \bigcup_{i=1}^{\infty} I_i^n$ and

$$m^*(E) + \frac{1}{n} \ge \sum_{i=1}^{\infty} m^*(I_i^n) \ge m^*(\cup I_i^n) \ge m^*(E)$$

Take $U_n = \bigcup_{i=1}^{\infty} I_i^n$, $E \subset U_n$ and U_n is a open set. Consider $O = \bigcap_n U_n$, $E \subset O$ and obeys

$$m^*(E) \le m^*(O) \le m^*(U_n) \le m^*(E) + \frac{1}{n}$$

Letting $n \to \infty$ yields the result. In particular, O is a G_{δ} set.

Now we restrict ourself to those sets which satisfies the "decomposition".

Example 1.5. E is called measurable if for any set A,

$$m^*(A) = m^*(E \cap A) + m^*(A \setminus E).$$

Theorem 1.6. All measurable sets form a σ -algebra which contains the Borel sets.

Example 1.7. If E is of finite measure then for any $\epsilon > 0$, there exists finite disjoint union E_i such that $\bigcup_{i=1}^{N} E_i = E$ and $m(E_i) < \epsilon$.

Proof. If E is bounded, say $E \subset [-N, N]$. Then

$$E = \bigcup_{i=-\infty}^{\infty} E \cap [-N + i\epsilon, -N + (i+1)\epsilon).$$

As [a, b) is Borel set, $E \cap [-N + i\epsilon, -N + (i+1)\epsilon)$ is measurable and its measure can only smaller than ϵ .

If E is unbounded, $E = \bigcup_{n \in \mathbb{Z}} E_n$ where $E_n = E \cap [n, n+1)$. E_n are all disjoint. By measurability,

$$m(E) = \sum_{n = -\infty}^{\infty} m(E_n) < +\infty.$$

Hence, $\exists N >> 1$ such that for all $|n| \ge N$,

$$m(\cup_{|n|\geq N} E_n) \leq \sum_{|n|\geq N} m(E_n) < \epsilon.$$

So $E = E_1 \cup E_2$ where $E_1 = \bigcup_{|n| \ge N} E_n$ and $E_2 = \bigcup_{|n| < N} E_n$.

 E_2 is now bounded, we can repeat the argument of bounded set on E_2 and hence we have the conclusion.